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Functional programming

R is commonly considered a ‘functional’ programming
language - and so far we have used functional programming.
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Some programming paradigms in R

Functional programming

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Object-oriented programming

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.
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Some programming paradigms in R

Literate programming

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

Reactive programming

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.
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Functions are objects

square <- function(x) {
return(xˆ2)

}
square(8)

[1] 64

The square function is an object like any other in R.
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Functions are objects

R functions can be printed,
print(square)

function(x) {
return(x^2)

}

inspected,
formals(square)

$x
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Functions are objects

put in a list,
my_functions <- list(square, sum, min, max)
my_functions

[[1]]
function(x) {
return(x^2)

}

[[2]]
function (..., na.rm = FALSE) .Primitive("sum")

[[3]]
function (..., na.rm = FALSE) .Primitive("min")

[[4]]
function (..., na.rm = FALSE) .Primitive("max")
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Functions are objects

used within lists,
my_functions[[1]](8)

[1] 64

but they can’t be subsetted!
square$x

Error in square$x: object of type 'closure' is not subsettable
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Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.
square <- function(x) {

if(!is.numeric(x)) {
stop("`x` needs to be numeric")

}
return(xˆ2)

}
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What are functions?

A function is comprised of three components:

The arguments/inputs (formals())
The body/code (body())
The environment (environment())

\ Your turn!

Use these functions to take a closer look at square().
Try modifying the function’s formals/body/env with <-.

12



What are functions?

A function is comprised of three components:

The arguments/inputs (formals())
The body/code (body())
The environment (environment())

\ Your turn!

Use these functions to take a closer look at square().
Try modifying the function’s formals/body/env with <-.

12



Functional programming

Since functions are like any other object, they can also be:

inputs to functions

� Extensible design with function inputs

Using function inputs can improve your package’s design!
Rather than limiting users to a few specific methods, allow
them to use and write any method with functions.
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Function arguments

Consider a function which calculates accuracy measures:
accuracy <- function(e, measure, ...) {

if (measure == "mae") {
mean(abs(e), ...)

} else if (measure == "rmse") {
sqrt(mean(eˆ2, ...))

} else {
stop("Unknown accuracy measure")

}
}

� Improving the design

This function is limited to only computing MAE and RMSE. 14



Function arguments

Using function operators allows any measure to be used.
MAE <- function(e, ...) mean(abs(e), ...)
RMSE <- function(e, ...) sqrt(mean(eˆ2, ...))
accuracy <- function(e, measure, ...) {

???
}
accuracy(rnorm(100), measure = RMSE)

\ Your turn!

Complete the accuracy function to calculate accuracy statis-
tics based on the function passed in to measure.
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Functional programming

Since functions are like any other object, they can also be:

inputs to functions

outputs of functions

� Functions making functions?

These functions are known as function factories.
Where have you seen a function that creates a function?
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Function factories

Let’s generalise square() to raise numbers to any power.
power <- function(x, exp) {
xˆexp

}
power(8, exp = 2)

[1] 64

power(8, exp = 3)

[1] 512

� Starting a factory

What if the function returned a function instead?
17



Function factories

power_factory <- function(exp) {
# R is lazy and won't look at exp unless we ask it to
force(exp)
# Return a function, which finds exp from this environment
function(x) {

xˆexp
}

}
square <- power_factory(exp = 2)
square(8)

[1] 64

cube <- power_factory(exp = 3)
cube(8)

[1] 512
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Function factories
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Function factories

Consider this function to calculate plot breakpoints of vectors.
breakpoints <- function(x, n.breaks) {

seq(min(x), max(x), length.out = n.breaks)
}

\ Your turn!

Convert this function into a function factory.
Is it better to create functions via x or n.breaks?
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Outline

1 Functional programming

2 Functional problem solving
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Split, apply, combine

Many problems can be simplified/solved using this process:

split (break the problem into smaller parts)
apply (solve the smaller problems)
combine (join solved parts to solve original problem)

This technique applies to both

writing functions (rewriting a function into sub-functions)
working with data (same function across groups or files)
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data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by() and summarise() are used together.

split: group_by() splits up the data into groups
apply: your summarise() code calculates a single value
combine: summarise() combines the results into a vector

library(dplyr)
mtcars |>

group_by(cyl) |>
summarise(mean(mpg))

# A tibble: 3 x 2
cyl `mean(mpg)`

<dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1
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Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

base R: The *apply() functions
purrr: The map*() functions

We will use purrr and but I’ll also share the base R equivalent.
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for or map?

Let’s square() a vector of numbers with a for loop.
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
x2[i] <- square(x[i])

}
x2

[1] 1 9 64

� Vectorisation?

Of course square() is vectorised, so we should use square(x).
Other functions like lm() or read.csv() are not!
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for or map?

Instead using map() we get. . .
library(purrr)
x <- c(1, 3, 8)
map(x, square) # lapply(x, square)

[[1]]
[1] 1

[[2]]
[1] 9

[[3]]
[1] 64 25



Mapping vectors

The same result, but it has been combined differently!
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Mapping vectors

To combine the results into a vector rather than a list, we
instead use map_vec() to combine results into a vector.
library(purrr)
x <- c(1, 3, 8)
map_vec(x, square) # vapply(x, square, numeric(1L))

[1] 1 9 64
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for or map

� Advantages of map

Less coding (less bugs!)
Easier to read and understand.

, Disadvantages of map

Less control over loop
Cannot solve sequential problems
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Functional mapping

Recall group_by() and summarise() from dplyr:
mtcars |>
group_by(cyl) |>
summarise(mean(mpg))

\ Your turn!

Use split() and map_vec() to achieve a similar result.
Hint: split(mtcars$mpg, mtcars$cyl) creates a list that
splits mtcars$mpg by each value of mtcars$cyl.
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Anonymous mapper functions

Suppose we want to separately model mpg for each cyl.
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 4,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 6,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 8,])
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Anonymous mapper functions

We can split the data by cyl with split(),
mtcars_cyl <- split(mtcars, mtcars$cyl)

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won’t work - why?

, Difficult to map

Using map(mtcars_cyl, lm) will apply lm(mtcars_cyl[i]).
The mapped vector is always used as the first argument!
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Anonymous mapper functions

We can write our own functions!
mtcars_lm <- function(.) lm(mpg ~ disp + hp + drat + wt, data = .)
map(mtcars_cyl, mtcars_lm)

$`4`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

52.51953 -0.06294 -0.07602 -1.44216 -3.10007

$`6`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt
15.123279 0.043635 0.002516 2.431884 -3.980263

$`8`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt
2.679e+01 6.585e-05 -1.346e-02 -4.531e-02 -2.189e+00
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Anonymous mapper functions

Or use ~ body to create anonymous functions.
# lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
map(mtcars_cyl, ~ lm(mpg ~ disp + hp + drat + wt, data = .))

$`4`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

52.51953 -0.06294 -0.07602 -1.44216 -3.10007

$`6`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt
15.123279 0.043635 0.002516 2.431884 -3.980263

$`8`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt
2.679e+01 6.585e-05 -1.346e-02 -4.531e-02 -2.189e+00
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Mapping mapping mapping

How would you then get the coefficients from all 3 models?
# mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

� Solution

# lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>

map(~ lm(mpg ~ disp + hp + drat + wt, data = .)) |>
map(coef)

$`4`
(Intercept) disp hp drat wt
52.51952502 -0.06293845 -0.07601929 -1.44215918 -3.10006904

$`6`
(Intercept) disp hp drat wt

15.123278848 0.043634767 0.002516317 2.431883903 -3.980262995

$`8`
(Intercept) disp hp drat wt

2.679295e+01 6.585329e-05 -1.345896e-02 -4.530536e-02 -2.188954e+00
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Mapping arguments

Any arguments after your function are passed to all functions.
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Mapping arguments

This works by passing through ... to the function.
x <- list(1:5, c(1:10, NA))
map_dbl(x, ~ mean(.x, na.rm = TRUE))

[1] 3.0 5.5
map_dbl(x, mean, na.rm = TRUE)

[1] 3.0 5.5
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Mapping arguments

These additional arguments are not decomposed / mapped.
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Mapping multiple arguments

It is often useful to map multiple arguments.
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Mapping multiple arguments

xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.5298053 0.4535120 0.4972954 0.3761379 0.5603879 0.4297308 0.5568129
[8] 0.4608077

ws <- map(1:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.5199651 0.4452852 0.4631680 0.3489870 0.5464348 0.4902108 0.5332631
[8] 0.4804868

39



Mapping multiple arguments

xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.5298053 0.4535120 0.4972954 0.3761379 0.5603879 0.4297308 0.5568129
[8] 0.4608077
ws <- map(1:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.5199651 0.4452852 0.4631680 0.3489870 0.5464348 0.4902108 0.5332631
[8] 0.4804868

39



Mapping multiple arguments
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Mapping many arguments

It is also possible to map any number of inputs with pmap.
n <- 1:3
min <- c(0, 10, 100)
max <- c(1, 100, 1000)
pmap(list(n, min, max), runif) # .mapply(runif, list(n, min, max), list())

[[1]]
[1] 0.8066672

[[2]]
[1] 35.75897 52.32907

[[3]]
[1] 751.5277 596.4991 941.6216
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Mapping many arguments
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Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

The furrr package (future + purrr) makes it easy to use map() in
parallel, providing future_map() variants.
library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] 0.5298053 0.4535120 0.4972954 0.3761379 0.5603879 0.4297308 0.5568129
[8] 0.4608077
future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.5199651 0.4452852 0.4631680 0.3489870 0.5464348 0.4902108 0.5332631
[8] 0.4804868
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Reduce vectors to single values

Sometimes you want to collapse a vector, reducing it to a
single value. reduce() always returns a vector of length 1.
x <- sample(1:100, 10)
x

[1] 70 42 35 61 85 81 77 65 68 40

sum(x)

[1] 624

# Alternative to sum()
reduce(x, `+`) # Reduce(`+`, x)

[1] 624
44



Reduce vectors to single values

The result from the function is re-used as the first argument.
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Reduce vectors to single values

\ Your turn!

We’re studying the letters in 3 bowls of alphabet soup.
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Reduce vectors to single values

\ Your turn!

We’re studying the letters in 3 bowls of alphabet soup.
Use reduce() to find the letters were in all bowls of soup!
Are all letters found in the soups?
alphabet_soup <- map(c(10,24,13), sample, x=letters, replace=TRUE)
alphabet_soup

[[1]]
[1] "k" "h" "a" "h" "b" "e" "k" "x" "c" "y"

[[2]]
[1] "k" "e" "d" "m" "k" "r" "w" "e" "d" "o" "k" "y" "p" "u" "u" "n" "r" "u" "f"

[20] "a" "m" "k" "q" "d"

[[3]]

[1] "v" "f" "k" "q" "f" "j" "s" "u" "j" "u" "r" "t" "k"
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Functional adverbs

purrr also offers many adverbs, which modify a function.

Capturing conditions

possibly(.f, otherwise): If the function errors, it
will return otherwise instead.
safely(.f): The function now returns a list with
‘result’ and ‘error’, preventing errors.
quietly(.f): Any conditions (messages, warnings,
printed output) are now captured into a list.
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Functional adverbs

purrr also offers many adverbs, which modify a function.

Capturing conditions

negate(.f) will return !result.

Chaining functions

compose(...) will chain functions together like a
chain of piped functions.
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Functional adverbs

purrr also offers many adverbs, which modify a function.

� Functions modifying functions?

These functions are all function factories!
More specifically they are known as function operators
since both the input and output is a function.
memoise::memoise() is also a function operator.
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