

WOMBAT 2024: Advanced R Tips & Tricks

Functional programming

workshop.nectric.com.au/advr-wombat24

1 Functional programming

2 Functional problem solving

1 Functional programming

2 Functional problem solving

R is commonly considered a 'functional' programming language - and so far we have used functional programming.

Functional programming

Functions are created and used like any other object.Output should only depend on the function's inputs.

Functional programming

Functions are created and used like any other object.Output should only depend on the function's inputs.

Object-oriented programming

- Functions are associated with object types.
- Methods of the same 'function' produce object-specific output.

Literate programming

- Natural language is interspersed with code.
- Aimed at prioritising documentation/comments.
- Now used to create reproducible reports/documents.

Literate programming

Natural language is interspersed with code.
 Aimed at prioritising documentation/comments.
 Now used to create reproducible reports/documents.

Reactive programming

Objects are expressed using code based on inputs.When inputs change, the object's value updates.

```
square <- function(x) {
  return(x<sup>2</sup>)
}
square(8)
```

[1] 64

The square function is an object like any other in R.

R functions can be printed,

print(square)

function(x) {
 return(x^2)
}

R functions can be printed,

print(square)

```
function(x) {
   return(x^2)
}
inspected,
```

formals(square)

put in a list,

```
my_functions <- list(square, sum, min, max)
my_functions</pre>
```

```
[[1]]
function(x) {
 return(x^2)
}
[[2]]
function (..., na.rm = FALSE) .Primitive("sum")
[[3]]
function (..., na.rm = FALSE) .Primitive("min")
[[4]]
```

used within lists,

my_functions[[1]](8)

[1] 64

used within lists,

my_functions[[1]](8)

[1] 64

but they can't be subsetted!

square\$x

Error in square\$x: object of type 'closure' is not subsettable

Functional programming handles different input types using control flow. The same code is ran regardless of object type.

```
square <- function(x) {
   if(!is.numeric(x)) {
     stop("`x` needs to be numeric")
   }
   return(x^2)
}</pre>
```

A function is comprised of three components:

- The arguments/inputs (formals())
- The body/code (body())
- The environment (environment())

A function is comprised of three components:

- The arguments/inputs (formals())
- The body/code (body())
- The environment (environment())

🌢 Your turn!

Use these functions to take a closer look at square(). Try modifying the function's formals/body/env with <-. Since functions are like any other object, they can also be:

inputs to functions

Extensible design with function inputs

Using function inputs can improve your package's design! Rather than limiting users to a few specific methods, allow them to use and write any method with functions.

Consider a function which calculates accuracy measures:

```
accuracy <- function(e, measure, ...) {
  if (measure == "mae") {
    mean(abs(e), ...)
  } else if (measure == "rmse") {
    sqrt(mean(e<sup>2</sup>, ...))
  } else {
    stop("Unknown accuracy measure")
  }
}
```

💡 Improving the design

This function is limited to only computing MAE and RMSE.

14

Using function operators allows any measure to be used.

```
MAE <- function(e, ...) mean(abs(e), ...)
RMSE <- function(e, ...) sqrt(mean(e<sup>2</sup>, ...))
accuracy <- function(e, measure, ...) {
    ???
}
accuracy(rnorm(100), measure = RMSE)</pre>
```

🌢 Your turn!

Complete the accuracy function to calculate accuracy statistics based on the function passed in to measure. Since functions are like any other object, they can also be:

- **inputs** to functions
- outputs of functions
- Functions making functions?

These functions are known as *function factories*. Where have you seen a function that creates a function?

Function factories

Let's generalise square() to raise numbers to any power.

```
power <- function(x, exp) {</pre>
 x^exp
power(8, exp = 2)
[1] 64
power(8, exp = 3)
[1] 512
  Starting a factory
  What if the function returned a function instead?
```

Function factories

```
power_factory <- function(exp) {
    # R is lazy and won't look at exp unless we ask it to
    force(exp)
    # Return a function, which finds exp from this environment
    function(x) {
        x^exp
    }
}
square <- power_factory(exp = 2)
square(8)</pre>
```

[1] 64

Function factories

```
power_factory <- function(exp) {
    # R is lazy and won't look at exp unless we ask it to
    force(exp)
    # Return a function, which finds exp from this environment
    function(x) {
        x^exp
    }
}
square <- power_factory(exp = 2)
square(8)</pre>
```

[1] 64

```
cube <- power_factory(exp = 3)
cube(8)</pre>
```

[1] 512

Consider this function to calculate plot breakpoints of vectors.

```
breakpoints <- function(x, n.breaks) {
   seq(min(x), max(x), length.out = n.breaks)
}</pre>
```

🌢 Your turn!

Convert this function into a function factory. Is it better to create functions via x or n.breaks?

1 Functional programming

2 Functional problem solving

Many problems can be simplified/solved using this process:

- split (break the problem into smaller parts)
- apply (solve the smaller problems)
- combine (join solved parts to solve original problem)

Many problems can be simplified/solved using this process:

- split (break the problem into smaller parts)
- apply (solve the smaller problems)
- combine (join solved parts to solve original problem)

This technique applies to both

writing functions (rewriting a function into sub-functions)

working with data (same function across groups or files)

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with data is when group_by() and summarise() are used together.

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with data is when group_by() and summarise() are used together.

split: group_by() splits up the data into groups

- apply: your summarise() code calculates a single value
- combine: summarise() combines the results into a vector

An example of split-apply-combine being used to work with data is when group_by() and summarise() are used together.

- split: group_by() splits up the data into groups
- apply: your summarise() code calculates a single value
 combine: summarise() combines the results into a vector

library(dplyr)
mtcars >
group_by(cyl) >
<pre>summarise(mean(mpg))</pre>

#	А	tibb	ole:	3	х	2	
		cyl	`mea	an	(mp	og)`	
	<dbl></dbl>			<dbl></dbl>			
1		4			2	26.7	
2		6			2	19.7	
3		8				15.1	

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

base R: The *apply() functions
 purrr: The map*() functions

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

- base R: The *apply() functions
- purrr: The map*() functions

We will use purrr and but I'll also share the base R equivalent.

for or map?

Let's square() a vector of numbers with a for loop.

```
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
    x2[i] <- square(x[i])
}
x2</pre>
```

[1] 1 9 64

for or map?

Let's square() a vector of numbers with a for loop.

```
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
  x2[i] <- square(x[i])
}
x2</pre>
```

[1] 1 9 64

Vectorisation?

Of course square() is vectorised, so we should use square(x). Other functions like lm() or read.csv() are not!

for or map?

Instead using map() we get...

library(purrr)
x <- c(1, 3, 8)
map(x, square) # lapply(x, square)</pre>

[[1]][1] 1

[[2]] [1] 9

[[3]] [1] 64

Mapping vectors

The same result, but it has been combined differently!

To combine the results into a vector rather than a list, we instead use map_vec() to combine results into a vector.

library(purr)
x <- c(1, 3, 8)
map_vec(x, square) # vapply(x, square, numeric(1L))</pre>

[1] 1 9 64

for or map

Advantages of map

- Less coding (less bugs!)
- Easier to read and understand.

for or map

💡 Advantages of map

- Less coding (less bugs!)
- Easier to read and understand.
- Disadvantages of map
 - Less control over loop
 - Cannot solve sequential problems

Functional mapping

Recall group_by() and summarise() from dplyr:

```
mtcars |>
  group_by(cyl) |>
  summarise(mean(mpg))
```

Your turn!

Use split() and map_vec() to achieve a similar result.
Hint: split(mtcars\$mpg, mtcars\$cyl) creates a list that
splits mtcars\$mpg by each value of mtcars\$cyl.

Suppose we want to separately model mpg for each cyl.

```
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 4,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 6,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 8,])
```

We can split the data by cyl with split(),

mtcars_cyl <- split(mtcars, mtcars\$cyl)</pre>

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won't work - why?

We can split the data by cyl with split(),

mtcars_cyl <- split(mtcars, mtcars\$cyl)</pre>

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won't work - why?

Difficult to map

Using map(mtcars_cyl, lm) will apply lm(mtcars_cyl[i]). The mapped vector is always used as the first argument!

We can write our own functions!

```
mtcars_lm <- function(.) lm(mpg ~ disp + hp + drat + wt, data = .)
map(mtcars_cyl, mtcars_lm)</pre>
```

\$`4`

```
Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)
```

Coefficients:

(Intercept)	disp	hp	drat	wt
52.51953	-0.06294	-0.07602	-1.44216	-3.10007

\$`6`

Or use ~ body to create anonymous functions.

```
# lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
map(mtcars_cyl, ~ lm(mpg ~ disp + hp + drat + wt, data = .))
```

\$`4`

```
Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)
```

Coefficients: (Intercent) disp bp drat

()	uisp	ΠP	urac	wc
53 -0.0	96294 -0.	.07602 -	1.44216 -	3.10007

C . 1 7

···+

Mapping mapping mapping

How would you then get the coefficients from all 3 models?

```
# mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))
```

How would you then get the coefficients from all 3 models?

```
# mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))
```

🍨 Solution

```
# lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
    map(~ lm(mpg ~ disp + hp + drat + wt, data = .)) |>
    map(coef)
$`4`
(Intercept) disp hp drat wt
52.51952502 -0.06293845 -0.07601929 -1.44215918 -3.10006904
```

Mapping arguments

Any arguments after your function are passed to all functions.

This works by passing through ... to the function.

```
x <- list(1:5, c(1:10, NA))
map_dbl(x, ~ mean(.x, na.rm = TRUE))</pre>
```

[1] 3.0 5.5
map_dbl(x, mean, na.rm = TRUE)

[1] 3.0 5.5

Mapping arguments

These additional arguments are not decomposed / mapped.

It is often useful to map multiple arguments.


```
xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)
```

[1] 0.5298053 0.4535120 0.4972954 0.3761379 0.5603879 0.42 [8] 0.4608077

```
xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)
```

[1] 0.5298053 0.4535120 0.4972954 0.3761379 0.5603879 0.42 [8] 0.4608077

ws <- map(1:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)</pre>

[1] 0.5199651 0.4452852 0.4631680 0.3489870 0.5464348 0.49
[8] 0.4804868

Mapping many arguments

It is also possible to map any number of inputs with pmap.

```
n <- 1:3
min <- c(0, 10, 100)
max <- c(1, 100, 1000)
pmap(list(n, min, max), runif) # .mapply(runif, list(n, min, max), list())
[[1]]
[1] 0.8066672
[[2]]
[1] 35.75897 52.32907</pre>
```

[[3]] [1] 751.5277 596.4991 941.6216

Mapping many arguments

Parallel mapping

Split-apply-combine problems are *embarrassingly parallel*.

Split-apply-combine problems are *embarrassingly parallel*.

The furrr package (future + purrr) makes it easy to use map() in parallel, providing future_map() variants.

library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] 0.5298053 0.4535120 0.4972954 0.3761379 0.5603879 0.42
[8] 0.4608077

future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

43

[1] 0.5199651 0.4452852 0.4631680 0.3489870 0.5464348 0.49

Sometimes you want to collapse a vector, reducing it to a single value. reduce() always returns a vector of length 1.

```
x <- sample(1:100, 10)
x
[1] 70 42 35 61 85 81 77 65 68 40
sum(x)
[1] 624
# Alternative to sum()
reduce(x, `+`) # Reduce(`+`, x)</pre>
```

Reduce vectors to single values

The result from the function is re-used as the first argument.

Reduce vectors to single values

🌢 Your turn!

We're studying the letters in 3 bowls of alphabet soup.

Reduce vectors to single values

🍐 Your turn!

We're studying the letters in 3 bowls of alphabet soup. Use reduce() to find the letters were in all bowls of soup! Are all letters found in the soups?

```
alphabet_soup <- map(c(10,24,13), sample, x=letters, replace=TRUE)
alphabet_soup</pre>
```

```
[[1]]
[1] "k" "h" "a" "h" "b" "e" "k" "x" "c" "y"
```

```
[[2]]
[1] "k" "e" "d" "m" "k" "r" "w" "e" "d" "o" "k" "y" "p" "u" "u" "n" "r" "u" "f"
[20] "a" "m" "k" "q" "d"
```

purrr also offers many *adverbs*, which modify a function.

Capturing conditions

- possibly(.f, otherwise): If the function errors, it will return otherwise instead.
- safely(.f): The function now returns a list with 'result' and 'error', preventing errors.
- quietly(.f): Any conditions (messages, warnings, printed output) are now captured into a list.

purrr also offers many *adverbs*, which modify a function.

```
Capturing conditions
```

```
negate(.f) will return !result.
```

Chaining functions

compose(...) will chain functions together like a chain of piped functions. purrr also offers many *adverbs*, which modify a function.

• Functions modifying functions?

These functions are all *function factories*! More specifically they are known as *function operators* since both the input and output is a function. memoise::memoise() is also a *function operator*.