
1

WOMBAT 2024:
Advanced R Tips & Tricks

Metaprogramming

workshop.nectric.com.au/advr-wombat24

https://workshop.nectric.com.au/advr-wombat24/

Outline

1 Metaprogramming

2 (Non-)standard evaluation

3 Tidy evaluation

2

Outline

1 Metaprogramming

2 (Non-)standard evaluation

3 Tidy evaluation

3

Metaprogramming

Metaprogramming is programming about programming.

In other words, writing code that can inspect and modify code.

� A powerful idea

Unlike most programming languages, R embraces metapro-
gramming and non-standard evaluation (NSE).
This powers much of the strange but wonderful interface
designs in R and its packages.

4

Metaprogramming

Metaprogramming is programming about programming.

In other words, writing code that can inspect and modify code.

� A powerful idea

Unlike most programming languages, R embraces metapro-
gramming and non-standard evaluation (NSE).
This powers much of the strange but wonderful interface
designs in R and its packages.

4

The rlang package

library(rlang)

A package for writing R code that interacts with R code.

, Not a new idea!

Metaprogramming/NSE doesn’t need the rlang package.

There are base R equivalents to the functions shown.

NSE is widely used in base R (not just in the tidyverse!)
5

Parsing code

Every time you run code anywhere in R it needs to be
‘interpreted’ by the parser.

The parser reads unstructured text (your written code) and
interprets it as an expression.
parse(text = "seq(1, 10, by = 0.5)")
parse_expr("seq(1, 10, by = 0.5)")

seq(1, 10, by = 0.5)

6

Deparsing code

Deparsing takes an expression and converts it back to text.
my_seq <- parse_expr("seq(1, 10, by = 0.5)")
expr_text(my_seq)

[1] "seq(1, 10, by = 0.5)"

This can be useful for providing informative error messages, or
print output for objects which store expressions.

7

Code is data

Expressions (code) can be used like any other data in R.
my_seq <- parse_expr("seq(1, 10, by = 0.5)")
my_seq

seq(1, 10, by = 0.5)
class(my_seq)

[1] "call"

eval(my_seq)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

[16] 8.5 9.0 9.5 10.0

8

Code is data

Expressions (code) can be used like any other data in R.
my_seq <- parse_expr("seq(1, 10, by = 0.5)")
my_seq

seq(1, 10, by = 0.5)
class(my_seq)

[1] "call"
eval(my_seq)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

[16] 8.5 9.0 9.5 10.0 8

Inspecting code

R expressions behave exactly like lists
as.list(my_seq)

[[1]]
seq

[[2]]
[1] 1

[[3]]
[1] 10

$by
[1] 0.5

9

Inspecting code

They can also be subsetted to inspect the functions and
arguments.
my_seq[[1]]

seq
my_seq[["by"]]

[1] 0.5

10

Modifying code

Expressions can be modified by replacing their elements.
my_seq[["by"]] <- 1
my_seq

seq(1, 10, by = 1)
eval(my_seq)

[1] 1 2 3 4 5 6 7 8 9 10

11

Looking at code

\ Your turn!

How do infix operators (like +, *, and %in%) get interpreted
by the parser?

Try to parse 5 + 3 * 7, and see how the order of operations
are represented in the parsed expression.

Bonus: rewrite this expression without infix operators.
12

Abstract syntax trees

The structure of expressions is commonly known as an
abstract syntax tree (AST). We can use lobstr::ast() to
explore it.
lobstr::ast(f(x, "y", 1))

13

Abstract syntax trees

More complicated (nested) code results in a larger/deeper AST.
lobstr::ast(f(g(1, 2), h(3, 4, i())))

14

Abstract syntax trees

\ Your turn!

Inspect the AST for the following code:
5 + 3 * 7

mtcars |> select(cyl)

mtcars |> mutate(wt/hp)

How does R structure these expressions?

Bonus: does -2ˆ2 yield 4 or -4? Why? 15

Analysing code

How would you programmatically analyse code from hundreds
of packages?

Regular expressions on the source code? Maybe. . .
Traverse the parsed source code’s AST? Yes!

This however can be tricky, requiring recursive algorithms that
explore the AST using breadth/depth first search (BFS/DFS).

16

Coding code

You can also write code that creates code. For this we use the
call2() function
call("seq", 1, 10, by = 0.5)
call2("seq", 1, 10, by = 0.5)

seq(1, 10, by = 0.5)

, parse_expr() or call2()?

You might be tempted to parse() code that you paste()

together, but this is unsafe and unreliable! Why?

17

Coding code

You can also write code that creates code. For this we use the
call2() function
call("seq", 1, 10, by = 0.5)
call2("seq", 1, 10, by = 0.5)

seq(1, 10, by = 0.5)

, parse_expr() or call2()?

You might be tempted to parse() code that you paste()

together, but this is unsafe and unreliable! Why?
17

Metaprogramming

� Coding code

Metaprogramming allows us to create code with code!
It also allows us to take code, and change how it is ran.

18

Outline

1 Metaprogramming

2 (Non-)standard evaluation

3 Tidy evaluation

19

Code evaluation

Standard evaluation

The code and environment is unchanged.
The result is evaluated as expected.

Non-standard evaluation (NSE)

The code and/or the environment is changed.
Leading to the evaluated result changing.

20

Code evaluation

Standard evaluation

The code and environment is unchanged.
The result is evaluated as expected.

Non-standard evaluation (NSE)

The code and/or the environment is changed.
Leading to the evaluated result changing.

20

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp)

21

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp)

21

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp)

21

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp)

21

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp)

21

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp)

21

Standard or non-standard evaluation?

\ Your turn!

Do these expressions use standard evaluation or NSE?
library(rlang)

a + b * c

mtcars |> select(cyl)

read_csv("data/study.csv")

ggplot() + geom_line()

mtcars |> mutate(wt/hp)

with(mtcars, wt/hp) 21

The building blocks of code evaluation

There are four building blocks used in evaluating code.

Constants: A specific value like 1 or "data/study.csv".
Symbols: A name of an object, like pi.
Expressions: Code structured as an AST.
Environments: The place where named objects are found.

\ Question?

How are these building blocks used together to construct
and evaluate code?

22

The building blocks of code evaluation

There are four building blocks used in evaluating code.

Constants: A specific value like 1 or "data/study.csv".
Symbols: A name of an object, like pi.
Expressions: Code structured as an AST.
Environments: The place where named objects are found.

\ Question?

How are these building blocks used together to construct
and evaluate code?

22

The building blocks of code evaluation

In rlang, we have three main building block functions:

sym("pi"): a symbol/name like pi

expr(1/pi): an expression for 1/pi
quo(1/pi): a quosure (expression and environment)

\ Follow along!

Use call2() and these building blocks to construct and
evaluate mtcars |> mutate(wt/hp).
Hint: x |> f(y) is parsed as f(x, y).

23

The building blocks of code evaluation

In rlang, we have three main building block functions:

sym("pi"): a symbol/name like pi

expr(1/pi): an expression for 1/pi
quo(1/pi): a quosure (expression and environment)

\ Follow along!

Use call2() and these building blocks to construct and
evaluate mtcars |> mutate(wt/hp).
Hint: x |> f(y) is parsed as f(x, y).

23

The building blocks of code evaluation

\ Your turn!

Spot the difference.
How do the results of the following functions differ?

sym("2 * pi")

expr(2 * pi)

quo(2 * pi)

24

Capturing code

More often than not, NSE involves capturing user code that
was used in your function. This is done with en*() functions:

ensym(x): capture a symbol
enexpr(x): capture an expression
enquo(x): capture a quosure

These must be used inside functions, for example:
capture_expr <- function(x) {
enexpr(x)

}
capture_expr(1/pi)

25

Capturing code

More often than not, NSE involves capturing user code that
was used in your function. This is done with en*() functions:

ensym(x): capture a symbol
enexpr(x): capture an expression
enquo(x): capture a quosure

These must be used inside functions, for example:
capture_expr <- function(x) {
enexpr(x)

}
capture_expr(1/pi)

25

Unquoting (bang-bang!!)

Why doesn’t the following code work?
log_expr <- function(x) {

Capture expression
x <- enexpr(x)
Return new expression with log()
expr(log(x))

}
log_expr(1/pi)

log(x)

26

Unquoting (bang-bang!!)

To use captured code in our functions, we need to unquote it.
log_expr <- function(x) {

Capture expression
x <- enexpr(x)
Return new expression with log()
expr(log(!!x))

}
log_expr(1/pi)

log(1/pi)

expr(log(!!x)) will create an expression (expr()) that replaces
x with its value (1/pi).

27

Unquoting (bang-bang!!)

� Unquoting in analysis

Unquoting replaces the object’s name with its value.
This is also useful when using NSE functions.

How can !! be useful with dplyr?

28

Unquoting (bang-bang!!)

Suppose we wanted to programmatically filter()

mtcars$cyl:
cyl <- 4
mtcars |>
filter(cyl == cyl)

What’s the problem? How can unquoting help?

29

Embracing inputs ({{curly-curly}})

The pattern !!enquo(x) is so often in functions that it has a
special shortcut known as ‘embrace’ or ‘curly-curly’. The code
{x} is identical to !!enquo(x).

Consider this function for summarising a value’s range:
var_summary <- function(data, var) {

data |>
summarise(n = n(), min = min({{ var }}), max = max({{ var }}))

}
mtcars |>

group_by(cyl) |>
var_summary(mpg)

Why is enquo() important here? 30

Unquote-splicing (bang-bang-bang!!!)

It is sometimes useful to unquote multiple code elements
across multiple arguments of a function.

This is done with unquote-splicing using !!! on a list of
symbols, expressions, or quosures.

A list symbols, expressions, or quosures can be:

created with syms(), exprs(), quos()
captured with ensyms(), enexprs(), enquos()

This is often used to capture, modify and pass on dots (...).

31

Unquote-splicing (bang-bang-bang!!!)

It is sometimes useful to unquote multiple code elements
across multiple arguments of a function.

This is done with unquote-splicing using !!! on a list of
symbols, expressions, or quosures.

A list symbols, expressions, or quosures can be:

created with syms(), exprs(), quos()
captured with ensyms(), enexprs(), enquos()

This is often used to capture, modify and pass on dots (...).
31

Unquote-splicing (bang-bang-bang!!!)

For example, the var_summary() function can be extended to
accept multiple variables (or expressions) via dots (...).
var_summaries <- function(data, ...) {

vars <- enquos(...)
.min <- purrr::map(vars, ~ expr(min(!!.)))
.max <- purrr::map(vars, ~ expr(max(!!.)))
data |>
summarise(n = n(), !!!.min, !!!.max)

}
mtcars |>

group_by(cyl) |>
var_summaries(mpg, wt)

32

Tidy dots (:=)

Tidy dots (:=) allow the argument names to be unquoted too.

For example:
my_df <- function(x) {
tibble(!!expr_text(enexpr(x)) := x * 2)

}
my_var <- 10
my_df(my_var)

A tibble: 1 x 1
my_var
<dbl>

1 20

You can alternatively use !!! with a named list. 33

Outline

1 Metaprogramming

2 (Non-)standard evaluation

3 Tidy evaluation

34

Tidy evaluation

Tidy evaluation refers to the use of NSE in the tidyverse to
make data analysis easier.

NSE is used widely across tidyverse packages, but at the same
time it is used sparingly.

\ Your turn!

Question
Where have you seen NSE used in tidyverse packages?

35

Tidy evaluation

Tidy evaluation searches the variables of the data first,
followed by the search path of the user’s environment.

This is a type of NSE, since it changes the environment in
which code is ran.
mtcars |>
mutate(mpg/wt)

mpg/wt would ordinarily error since mpg and wt aren’t found,
but mutate() uses NSE to first search the dataset.

36

Tidy evaluation

This is accomplished using eval_tidy(), with the arguments:

expr: The expression (code) to evaluate
data: The dataset ‘mask’ to search first
env: The environment to search next.

Unlike eval(), this will:

Respect the environments of quosures
Attach pronouns for .data and .env

37

Tidy evaluation

We can use eval_tidy() to create a simple dplyr::mutate()

function variant.
my_mutate <- function(.data, mutation) {
mutation <- enquo(mutation)
result <- eval_tidy(mutation, data = .data, env = caller_env())
.data[[as_label(mutation)]] <- result
.data

}
mtcars |>
my_mutate(mpg/wt)

Question: What features are missing in our function compared
to dplyr::mutate()? 38

Domain specific languages: tidyselect

The tidyselect package is useful for selecting variables from a
dataset using NSE. The code/behaviour is so different it forms
a domain specific language (DSL).

ñ tidyselect in the wild

You almost certainly have used tidyselect in the tidyverse.
It powers column selection in:

dplyr for select(), across(), and more.
tidyr for almost everything.

39

Domain specific languages: tidyselect

The tidyselect domain specific language (DSL), which uses NSE
to identify columns with:

var1:var10

matches("x.\\d")

all_of(<chr>)

where(<fn>)

40

Domain specific languages: tidyselect

If you need tidy column selection, simply import and use
tidyselect::eval_select().
library(tidyselect)
x <- expr(mpg:cyl)
eval_select(x, mtcars)

mpg cyl
1 2

This function returns the column numbers that were selected.

41

tidyselect

Putting it all together, we can create our own dplyr::select()

function variant.
my_select <- function(.data, cols) {
cols <- eval_select(enexpr(cols), .data)
.data[cols]

}
my_select(mtcars, c(mpg, wt, vs:carb))

\ Your turn!

Modify this function to instead accept the selected columns
via the dots (...), just like dplyr::select(). 42

Tidyverse design principles

Notice how little NSE the tidyverse uses to great effect.

A lot of thought has gone into designing the tidyverse, which
mostly uses standard evaluation: https://design.tidyverse.org/

� A design compromise

While very appreciated by users, NSE introduces a lot of
complexity when programming with tidyverse packages.

43

Tidyverse design principles

Notice how little NSE the tidyverse uses to great effect.

A lot of thought has gone into designing the tidyverse, which
mostly uses standard evaluation: https://design.tidyverse.org/

� A design compromise

While very appreciated by users, NSE introduces a lot of
complexity when programming with tidyverse packages.

43

Software design with NSE

In most cases you shouldn’t use NSE in your code.

, Why?

NSE can be incredibly confusing for others!
Code might work outside your function, but is completely
different when used inside it.

Understanding NSE however is very useful for advanced use of
tidyverse packages in non-interactive contexts.

44

Software design with NSE

In most cases you shouldn’t use NSE in your code.

, Why?

NSE can be incredibly confusing for others!
Code might work outside your function, but is completely
different when used inside it.

Understanding NSE however is very useful for advanced use of
tidyverse packages in non-interactive contexts.

44

Software design with NSE

In most cases you shouldn’t use NSE in your code.

, Why?

NSE can be incredibly confusing for others!
Code might work outside your function, but is completely
different when used inside it.

Understanding NSE however is very useful for advanced use of
tidyverse packages in non-interactive contexts.

44

Software design with NSE

If you must use NSE, you should:

Use it sparingly

Be consistent

Clearly document it

Get a lot of design benefit from it

(not just for slightly less typing!)

45

	Metaprogramming
	(Non-)standard evaluation
	Tidy evaluation

