
1

WOMBAT 2024:
Advanced R Tips & Tricks

Quirky R

workshop.nectric.com.au/advr-wombat24

https://workshop.nectric.com.au/advr-wombat24/

Outline

1 Background

2 R is weird!

3 Vectorisation

2

Outline

1 Background

2 R is weird!

3 Vectorisation

3

Hello!

I’m Mitch!

I make lots of R packages, and teach lots of people!

Among other things. . .

PhD candidate at Monash University
Data consulting and workshops at Nectric
Specialised in time series analysis
Develops R packages (fable, vitae, etc.)
Grows all the things (hobby permaculturist)

4

Hello!

I’m Mitch!

I make lots of R packages, and teach lots of people!

Among other things. . .

PhD candidate at Monash University
Data consulting and workshops at Nectric
Specialised in time series analysis
Develops R packages (fable, vitae, etc.)
Grows all the things (hobby permaculturist)

4

Workshop materials

Are all on the website:

https://workshop.nectric.com.au/advr-wombat24/

ñ Here you’ll find. . .

these slides
demonstrated code
video recordings
everything you’ll need (for the workshop)

5

https://workshop.nectric.com.au/advr-wombat24/

Workshop materials

Are all on the website:

https://workshop.nectric.com.au/advr-wombat24/

ñ Here you’ll find. . .

these slides
demonstrated code
video recordings
everything you’ll need (for the workshop)

5

https://workshop.nectric.com.au/advr-wombat24/

Today’s goals (very ambitious!)

1 Understand (and embrace) the quirks of using R
2 ‘Appreciate’ how ‘helpful’ R tries to be
3 Use vctrs to avoid common problems with vectors
4 Learn functional programming
5 Write code that writes and runs code (metaprogramming)
6 Use non-standard evaluation for code design

6

Expectations

1 Follow the code of conduct
2 Be kind and respectful
3 Ask relevant questions any time
4 General Q&A during breaks
5 Make mistakes and learn!

ñ Ask lots of questions!

We’ll have the most fun exploring the depths of R together.

7

Expectations

1 Follow the code of conduct
2 Be kind and respectful
3 Ask relevant questions any time
4 General Q&A during breaks
5 Make mistakes and learn!

ñ Ask lots of questions!

We’ll have the most fun exploring the depths of R together.

7

The first question

\ Your turn!

Why are you here?
What motivates you to learn ‘advanced R’ tips and tricks?

improve your analysis code?
make better R packages?
something else?

8

The first question

\ Your turn!

Why are you here?
What motivates you to learn ‘advanced R’ tips and tricks?

improve your analysis code?
make better R packages?
something else?

8

The first question

\ Your turn!

Why are you here?
What motivates you to learn ‘advanced R’ tips and tricks?

improve your analysis code?

make better R packages?
something else?

8

The first question

\ Your turn!

Why are you here?
What motivates you to learn ‘advanced R’ tips and tricks?

improve your analysis code?
make better R packages?

something else?

8

The first question

\ Your turn!

Why are you here?
What motivates you to learn ‘advanced R’ tips and tricks?

improve your analysis code?
make better R packages?
something else?

8

Outline

1 Background

2 R is weird!

3 Vectorisation

9

R is weird!

Featured in Kelly Bodwin’s useR! 2024 keynote “Keep R weird”.

10

https://www.youtube.com/watch?v=KOQBfC1WPwM

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1

everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

11

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1
everything is a vectors (there are no scalars)

NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

11

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)

object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

11

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling

functional programming design
lazy and non-standard evaluation
lets you do anything

11

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design

lazy and non-standard evaluation
lets you do anything

11

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation

lets you do anything

11

R is weird!

Most software developers (of other languages) are SHOCKED
when they see all the ‘weird’ behaviour of R.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

11

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1

everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1
everything is a vectors (there are no scalars)

NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)

object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything

12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling

functional programming design
lazy and non-standard evaluation
lets you do anything

12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design

lazy and non-standard evaluation
lets you do anything

12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation

lets you do anything

12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

indexing from 1
everything is a vectors (there are no scalars)
NA (missing values)
object types, casting, recycling
functional programming design
lazy and non-standard evaluation
lets you do anything 12

R is QUIRKY!

I prefer to think of R as quirky.

These quirks are often ‘helpful’ for data analysis.

, R’s ‘help’ can hurt!

Unlike stricter languages, sometimes R’s helpful nature can
cause nasty programming problems.

13

Workshop content

There’s a lot of fun things I can show you about R. . .

14

Workshop content

There’s a lot of fun things I can show you about R. . .

14

Workshop content

, Chaotic evil

We can explore the ‘dark side’ and produce truly evil code. . .

� Lawful good

Or create lovely code which effortlessly solves problems.

15

Workshop content

, Chaotic evil

We can explore the ‘dark side’ and produce truly evil code. . .

� Lawful good

Or create lovely code which effortlessly solves problems.

15

The dark side

16

The dark side

R let’s you do almost anything!

This includes (figuratively) shooting yourself in the foot.

active bindings
changing R itself
https://github.com/romainfrancois/evil.R/
attach(structure(list(), class =
"UserDefinedDatabase"))

17

https://github.com/romainfrancois/evil.R/

The dark side

R let’s you do almost anything!

This includes (figuratively) shooting yourself in the foot.

active bindings
changing R itself
https://github.com/romainfrancois/evil.R/
attach(structure(list(), class =
"UserDefinedDatabase"))

17

https://github.com/romainfrancois/evil.R/

The dark side

R let’s you do almost anything!

This includes (figuratively) shooting yourself in the foot.

active bindings

changing R itself
https://github.com/romainfrancois/evil.R/
attach(structure(list(), class =
"UserDefinedDatabase"))

17

https://github.com/romainfrancois/evil.R/

The dark side

R let’s you do almost anything!

This includes (figuratively) shooting yourself in the foot.

active bindings
changing R itself

https://github.com/romainfrancois/evil.R/
attach(structure(list(), class =
"UserDefinedDatabase"))

17

https://github.com/romainfrancois/evil.R/

The dark side

R let’s you do almost anything!

This includes (figuratively) shooting yourself in the foot.

active bindings
changing R itself
https://github.com/romainfrancois/evil.R/

attach(structure(list(), class =
"UserDefinedDatabase"))

17

https://github.com/romainfrancois/evil.R/

The dark side

R let’s you do almost anything!

This includes (figuratively) shooting yourself in the foot.

active bindings
changing R itself
https://github.com/romainfrancois/evil.R/
attach(structure(list(), class =
"UserDefinedDatabase"))

17

https://github.com/romainfrancois/evil.R/

Workshop content

Today we’ll learn useful tips and tricks for R.

Avoid common mistakes
Use powerful features

This workshop will focus on three R-centric topics:

Vectorisation
Functional programming
Non-standard evaluation

18

Workshop content

Today we’ll learn useful tips and tricks for R.

Avoid common mistakes
Use powerful features

This workshop will focus on three R-centric topics:

Vectorisation
Functional programming
Non-standard evaluation

18

Workshop content

� Textbook reference

Much more Advanced R can be found in Hadley Wickham’s
Advanced R book. It’s freely available online here:
https://adv-r.hadley.nz/

19

https://adv-r.hadley.nz/

Outline

1 Background

2 R is weird!

3 Vectorisation

20

Vectorisation

R’s design around vectors is perfect for data.

Vectors are objects which store data (several datum) together.

\ Your turn!

What types of vectors (‘data’) do we have?

21

Types of vectors

There are two types of vectors in R:

Atomic (single-type)
List (mixed-type)

22

Types of vectors

\ Your turn!

Which of the following vectors are ‘atomic’ in R?
Random numbers
Today’s date
A dataset (data.frame)
A matrix√

−1 (a complex number)
NULL

23

Subsetting vectors: x[i]

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

What's the 13th letter?
letters[13L]

[1] "m"

What's the last letter?
letters[length(letters)]

[1] "z"

24

Subsetting vectors: x[i]

Remember: indexing starts at 1!

letters[0L]

character(0)

� Negative indices

Remember: R is weird!

letters[-1L]
[1] "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"

[20] "u" "v" "w" "x" "y" "z"

25

Subsetting vectors: x[i]

Remember: indexing starts at 1!

letters[0L]

character(0)

� Negative indices

Remember: R is weird!

letters[-1L]
[1] "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"

[20] "u" "v" "w" "x" "y" "z"

25

Subsetting vectors: x[i]

What's the first three letters?
letters[1:3]

[1] "a" "b" "c"

\ Safe sequences

Using 1:n is unsafe in general code. seq_len(n) is safer.
What's the first 'zero' letters?
n <- 0
letters[1:n]
[1] "a"

letters[seq_len(n)]

character(0)

26

Subsetting vectors: x[i]

What's the first three letters?
letters[1:3]

[1] "a" "b" "c"

\ Safe sequences

Using 1:n is unsafe in general code. seq_len(n) is safer.
What's the first 'zero' letters?
n <- 0
letters[1:n]
[1] "a"

letters[seq_len(n)]

character(0) 26

Subsetting vectors: x[i, j]

When subsetting matrices (or arrays) we use multiple indices.
Get the first row and third column
volcano[1L,3L]

[1] 101

\ Subsetting simplification

By default R will simplify matrices/arrays into 1-d vectors.
It’s often safer to prevent this with drop = FALSE.

27

Subsetting vectors: x[i, j]

When subsetting matrices (or arrays) we use multiple indices.
Get the first row and third column
volcano[1L,3L]

[1] 101

\ Subsetting simplification

By default R will simplify matrices/arrays into 1-d vectors.
It’s often safer to prevent this with drop = FALSE.

27

Subsetting vectors: x[i, j]

What's the first column?
volcano[,1L]

[1] 100 101 102 103 104 105 105 106 107 108 109 110 110 111 114 116 118 120 120
[20] 121 122 122 123 124 123 123 120 118 117 115 114 115 113 111 110 109 108 108
[39] 107 107 107 108 109 110 111 111 112 113 113 114 115 115 114 113 112 111 111
[58] 112 112 112 113 114 114 115 115 116 116 117 117 116 114 112 109 106 104 102
[77] 101 100 100 99 99 99 99 98 98 97 97

But with keeping the matrix
(empty arguments for positioning is also quirky!)
volcano[,1L,drop=FALSE]

[,1]
[1,] 100
[2,] 101
[3,] 102
[4,] 103
[5,] 104
[6,] 105
[7,] 105
[8,] 106
[9,] 107

[10,] 108
[11,] 109
[12,] 110
[13,] 110
[14,] 111
[15,] 114
[16,] 116
[17,] 118
[18,] 120
[19,] 120
[20,] 121
[21,] 122
[22,] 122
[23,] 123
[24,] 124
[25,] 123
[26,] 123
[27,] 120
[28,] 118
[29,] 117
[30,] 115
[31,] 114
[32,] 115
[33,] 113
[34,] 111
[35,] 110
[36,] 109
[37,] 108
[38,] 108
[39,] 107
[40,] 107
[41,] 107
[42,] 108
[43,] 109
[44,] 110
[45,] 111
[46,] 111
[47,] 112
[48,] 113
[49,] 113
[50,] 114
[51,] 115
[52,] 115
[53,] 114
[54,] 113
[55,] 112
[56,] 111
[57,] 111
[58,] 112
[59,] 112
[60,] 112
[61,] 113
[62,] 114
[63,] 114
[64,] 115
[65,] 115
[66,] 116
[67,] 116
[68,] 117
[69,] 117
[70,] 116
[71,] 114
[72,] 112
[73,] 109
[74,] 106
[75,] 104
[76,] 102
[77,] 101
[78,] 100
[79,] 100
[80,] 99
[81,] 99
[82,] 99
[83,] 99
[84,] 98
[85,] 98
[86,] 97
[87,] 97

:::

28

Subsetting vectors: x[[i]]

\ Your turn!

What’s the difference between x[i] and x[[i]]?
This code gives the same result. . .
letters[13L]
[1] "m"

letters[[13L]]
[1] "m"

29

Subsetting (list) vectors: x[[i]]

x[[i]] is used to subset (list) vectors into their element’s type.

Key differences:

Only works for single indices i
Drops the (list) structure of x

Orange[2L]

age
1 118
2 484
3 664
4 1004
5 1231
6 1372
7 1582
8 118
9 484
10 664
11 1004
12 1231
13 1372
14 1582
15 118
16 484
17 664
18 1004
19 1231
20 1372
21 1582
22 118
23 484
24 664
25 1004
26 1231
27 1372
28 1582
29 118
30 484
31 664
32 1004
33 1231
34 1372
35 1582

Orange[[2L]]

[1] 118 484 664 1004 1231 1372 1582 118 484 664 1004 1231 1372 1582 118
[16] 484 664 1004 1231 1372 1582 118 484 664 1004 1231 1372 1582 118 484
[31] 664 1004 1231 1372 1582

30

Subsetting (list) vectors: x$col

Often we use the list vector’s names for subsetting.
Orange$age

[1] 118 484 664 1004 1231 1372 1582 118 484 664 1004 1231 1372 1582 118
[16] 484 664 1004 1231 1372 1582 118 484 664 1004 1231 1372 1582 118 484
[31] 664 1004 1231 1372 1582

This also works for x[["col"]].
Orange[["age"]]

[1] 118 484 664 1004 1231 1372 1582 118 484 664 1004 1231 1372 1582 118
[16] 484 664 1004 1231 1372 1582 118 484 664 1004 1231 1372 1582 118 484
[31] 664 1004 1231 1372 1582

31

Subsetting (list) vectors: x$col

Often we use the list vector’s names for subsetting.

\ Your turn!

What happens with the following code?
Orange["age"]
Orange["age",]
Orange[,"age"]

32

Subsetting (list) vectors: x$col

, Caution! R’s eager to please.

Orange["age",] should probably error, but it doesn’t.
There was no rowname called “age”, so it gives a ‘miss-
ing’ row.
What does Orange[NA,] do?
What about Orange$a and Orange[["a"]]? What if we also
had a column called ‘alpine’?

33

Subsetting (list) vectors: x$col

A tibble is stricter than data.frame (it also looks nicer).

By being less ‘helpful’, it is (a bit) safer.

\ Your turn!

Convert Orange into a tibble with as_tibble(), then try
various subsets.
library(dplyr)
orange_trees <- as_tibble(Orange)
orange_trees$a
orange_trees["age",]
orange_trees[NA,] 34

Combining vectors: c(x, y)

Vectors are combined with c(), short for ‘combine’.
c(1, 2, 3)

[1] 1 2 3

, Confusing combinations

What happens when you combine vectors of different
types?
Try it!

35

Combining vectors: vec_c(x, y)

The vctrs package makes combining vectors much stricter
when you use vec_c().

This is used widely in tidyverse packages now, to make data
analysis in the tidyverse safer than base R.

\ Your turn!

Use vec_c() from {vctrs} to combine different vectors.
What works, and what errors (safely)?

36

Casting vectors: as_*(), vec_cast()

This vector converting process is known as ‘casting’.

Explicit casting with as.numeric(), as.Date() or vec_cast()
is good practice.

� Parsing data from text

It is also safer to explicitly specify column types when
reading in data.
The readr package writes this code for you - just copy it!

37

Casting vectors: as_*(), vec_cast()

This vector converting process is known as ‘casting’.

Explicit casting with as.numeric(), as.Date() or vec_cast()
is good practice.

� Parsing data from text

It is also safer to explicitly specify column types when
reading in data.
The readr package writes this code for you - just copy it!

37

Recycling: vec_recycle()

What happens when you use two vectors of different length?
x <- 1:10
b <- 2
bˆx

[1] 2 4 8 16 32 64 128 256 512 1024

� So helpful!

R ‘recycles’ b to be the same length as x.
This aspect of R’s vectorisation is great since we don’t need
to write a loop.

38

Recycling: vec_recycle()

What happens when you use two vectors of different length?
x <- 1:10
b <- 2
bˆx

[1] 2 4 8 16 32 64 128 256 512 1024

� So helpful!

R ‘recycles’ b to be the same length as x.
This aspect of R’s vectorisation is great since we don’t need
to write a loop. 38

Recycling: vec_recycle()

What if we’re calculating the revenue of fruit sales. . .
fruit <- c("apple", "banana", "kiwi")
sales <- c(10, 3, 8)
price <- c(2.99, 4.39)
sales*price

Warning in sales * price: longer object length is not a multiple of shorter
object length

[1] 29.90 13.17 23.92

, Reckless recycling

R ‘helpfully’ recycles everything, regardless of if their lengths
match. At least it warned us something was amiss! 39

Recycling: vec_recycle()

It is safer to only recycle length 1 vectors, which is done in the
tidyverse via vec_recycle(). If you’re . . .

writing packages recycle safely with vec_recycle().

undertaking analysis be careful of mismatched vector
lengths (using data.frame/tibble helps)

� Distribution statistics

The p/d/q/r functions in R are notoriously bad at recycling.
My {distributional} package has much safer behaviour. 40

	Background
	R is weird!
	Vectorisation

